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Abstract. The real space renormalisation group of Niemeijer and van Leeuwen is applied to 
a mixed-spin Ising model on a simple quadratic lattice. The motivation is the investigation 
of critical phenomena in king models with less than the usual translational symmetry. The 
models in question are relevant to the study of ferrimagnetism. Two calculations, charac- 
terised by different block constructions, are performed and compared. Exponent values are 
found to he in good agreement with those suggested by the universality hypothesis. The 
utility of the renormalisation group for dealing with ferrimagnetism is demonstrated, but the 
high degree of lahour involved in such an exercise is indicated. 

1. Introduction 

Since the introduction, by Wilson (1971a, b), of the renormalisation group (RG) method 
for the analysis of critical phenomena, attention has been largely focused on relatively 
simple model systems. In particular, there has been extensive study of systems designed 
to simulate the critical properties of ferro- and antiferromagnets. In this respect, 
analyses of the Ising and Heisenberg model have been predominant. After Wilson's 
work on systems with continuous spin variables (in which the spatial dimension d = 4 
plays an important part, and application to two-dimensional systems is highly ques- 
tionable), there followed the development of realisations of the RG specifically designed 
to treat systems of discrete spins and ideally suited to two dimensions (Barber 1977). 
All of these methods have so far dealt with systems in which all lattice sites are 
equivalent in the sense that only a single kind of spin is present. This restriction has 
limited the analyses to ferro- and antiferromagnetism, and it appears desirable to 
extend the scope of investigation to include the case of ferrimagnetism (NCell948). The 
aim of this paper is to go some way towards achieving this objective through a KG 
analysis of a particularly simple model capable of uni-axial ferrimagnetism. 

Of the discrete spin treatments mentioned above, the cumulant expansion of 
Niemeijer and van Leeuwen (1973, 1974) is employed in this paper. This particular 
method was first applied, by Niemeijer and van Leeuwen (1973,1974), to the case of a 
two-dimensional spin-; Tsing model on a triangular lattice, and this work was later 
extended by Sudbo and Hemmer (1976), and Hemmer and Velarde (1976), who 
provided some insight into the asymptotic properties of the perturbation expansion on 
which the method is based. Further insight into the nature of the method was supplied 
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through analysis, by Nauenberg and Nienhuis (1974), of the spin-; model on a square 
lattice, and similar investigations were undertaken by Hsu et a1 (1975). Fields and 
Fogel (1975) carried out an analysis of the spin-1 Ising model on both a square lattice 
(two dimensions) and a cubic lattice (three dimensions), and thereby provided some 
indication of the computational difficulties involved in employing the method to treat 
three-dimensional problems. 

All of these calculations, together with applications of the Niemeijer-van Leeuwen 
method to simple models with spin dimensionality n > 1 (e.g., the classical X Y  model 
on the triangular lattice, Lublin (1975)), have indicated the manner in which the 
universality of critical exponents arises naturally from the RG formalism. The system 
considered in this paper is a two-dimensional Ising model consisting of both spin-; and 
spin-1 objects, which one expects to belong to the same universality class.(Wilson 
1971a, b) as the above (more simple) Ising models. Such a property is borne out by the 
calculations of this paper, which provide evidence supporting the expected similarities 
between critical phenomena associated with ferro- and antiferromagnetism on the one 
hand and ferrimagnetism on the other. 

It is important to realise that the Niemeijer-van Leeuwen method is particularly 
suited to the treatment of the system considered here, since the spin magnitudes of the 
two species (spin 1 and spin 3) are preserved under the RG transformation, which is just 
what is wanted. (This contrasts with the E expansion of Wilson and Kogut (1974), 
where even spin discreteness is lost.) However, we demonstrate in this paper the high 
degree of labour required to implement the method in the case of systems more 
complicated than those studied by previous workers, and we are thereby provided with 
an indication of the practical limitations of this method. 

2. Niemeijer-van Leeuwen method on mixed-spin system 

The mixed-spin system is illustrated infigure l,.and consists of a simple quadratic lattice 
of spin-1 and spin-; Ising objects, where each spin 1 has only spin i3s  as nearest 
neighbours, and vice versa. This model is designed so as to be capable of a particular 
form of uni-axial ferrimagnetism in which there exist two interpenetrating sublattices. 
The spin-1 and spin-; objects are indicated by a circle (0) and cross (x), respectively, 

\* x o x o x o Y o x o x  lo 

x 0 x 0 ‘ x  0 x 0 j, 0 x 0 

Figure 1. Mixed-spin system and interactions generated in second order. 
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and the corresponding spin magnitudes are denoted by s and a, so rhat s = -1,O, 1 and 
u = -3,$ are the allowed values. Considering only nearest-neighbour interactions, the 
reduced Hamiltonian of the system takes the form 

where K and H denote, respectively, the reduced nearest-neighbour coupling constant 
and the reduced externally applied magnetic field. 

We perform in this paper two independent Niemeijer-van Leeuwen RG analyses of 
the system characterised by two distinct block constructions shown in figures 2 and 3, 
respectively. Considering the second type of construction for the moment, the spin-1 

X 0 
l I 

and spin-$ blocks are constructed as x -0- x and 0- x -0 , respectively, and the 
I 
0 

I 

conventional prescription, given by Niemeijer and van Leeuwen (1Y73, 1974), for the 

X 

Figure 2. Construction of four-spin blocks. 

L . 
Figure 3. Construction of five-spin blocks. 
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definition of block spin can readily be applied. Then the spins CI and SJ of spin-; and 
spin-1 blocks are defined as 

and 

i = l  
(3) 

where I and J index the block positions. These definitions lead to the allowed (and 
required) values Cr = -4, 1 and SJ = -1, 0,1, as can readily be seen from a consideration 
of the 34 x 2 and 24 x 3 internal spin configurations appropriate to I and J respectively 
(it is noted here that we take sgn (0)  = 0 in (3)). 

The RG transformation for a particular block construction is given by 

where the summation is over all spin states and P[C, S ;  a, s] is a product over all spin-; 
and spin-1 blocks. For the block construction embodied by (2) and (3), this is given by 

P[C, S ;  a, SI = fl p ' 1 ' 2 ' ( ~ I ;  a', is;, j = I ,  4))p(')(sJ; s", {ci, i = I, 4)) ( 5 )  
I J  

where the quantities p"") and p(l)  reflect (2) and (3) through the relations 

4 

P(')(S"; s", {U;, i = I, 4)) = s (7) 

and we have employed the Kronecker delta. 
Consider now the first type of block construction. It is seen from figure 2 that the 

~~ 

0 - x  
x - 0  

construction i I is used for both spin-1 and spin-; blocks. However, this does not 

lead to any natural distinction between the blocks, and we find it necessary to impose 
this formally. This is achieved by defining a spin-1 block in the usual way, i.e. through 
the relation 

2 

i=l j - 1  

and defining a spin-; block in such a way that those internal spin configurations {a', 3') 

which satisfy af s: = 0 are formally considered to contribute to Cr = k;. 
The idea of associating such configurations with a non-zero net block spin was 
introduced by Nauenberg and Nienhuis (1974). Our prescription differs from theirs, 
however, in that we associate all such configurations (10 out of a total of 2' x 3' for the 
given construction) with both Cr = --;and Cr = +;, and introduce a multiplyingfactor of 
4 in order to avoid counting these twice. This definition-which seems superior on 
grounds of symmetry-together with (8) allows the formal construction of the mixed- 
spin block system of figure 2 .  Equations ( 4 )  and (5) again hold, with the latter modified 
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in such a way that p(1'21 and p ( ' )  are now given by 

Following Niemeijer and van Leeuwen (1973, 1974), a calculation proceeds by 
firstly considering the Hamiltonian (1) with the field term absent, and dividing this into 
an intrablock part Ro and an interblock part V, and writing 

where the sum in (1 1) is over all spin states compatible with the configuration {C, S }  of 
block spins, and X'({C, S } )  is the renormalised Hamiltonian of (4). This is expressed in 
terms of the block spins only, since spin configurations internal to the blocks are 
summed out in (4) and (11). The brackets are averages analogous to those defined by 
Niemeijer and van Leeuwen (1973, 1974), and are given by 

where the summations are as at (1 1). 
The analyses of this paper are taken up to the second-order term in V of (12), and 

the Hamiltonian required to generate the corresponding recursion relations €or the 
coupling constants (Niemeijer and van Leeuwen 1973,1974) contains more terms than 
in the zero-field part of (1). This is demonstrated explicitly in §§ 3 and 4, where the first 
and second types, respectively, of block construction are employed. 

The recursion relations for the case of non-zero external magnetic field H are found, 
following Niemeijer and van Leeuwen (1973, 1974), from consideration of the expan- 
sion 

where the quantities Un denote odd-spin interactions of types indexed by p, with H, 
the corresponding coupling constants. The analyses are taken up to the first-order term 
in V of (14) and it is found necessary (for both block constructions) to consider the 
application of distinct magnetic fields on the two sublattices of the mixed-spin system, 
together with a three-spin interaction term. 

3. Calculation employing blocks of four spins 

For the block construction of figure 2, the Hamiltonian required to generate the full 
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second-order approximation to the RG transformation (1 1) is given by 

The notation of (15) is explained with the aid of figure 1. The first sum of (15) is over all 
nearest-neighbour pairs; the second and third sums are over all second-neighbour pairs 
of spin ijs aligned, respectively, along the directions 1 and 2 of figure 1, and the fourth 
and fifth sums are defined similarly with respect to spin 1’s; the sixth and seventh sums 
are over all third-neighbour pairs of spin 4’s and spin l’s, respectively; the eighth and 
ninth sums are taken over all triplets { c+ i s , f lk )  such that the pairs ij and jk are nearest 
neighbour and ik is second neighbour along the directions 1 and 2,  respectively; the 
tenth sum is again over triplets, and ik is third neighbour. It is seen that the coupling 
constants K8, K9 and Klo are appropriate to four-spin interactions. It is noted here that 
the interactions appearing in figure 1 are labelled by the corresponding coupling 
constants. 

We now give the full set of second-order recursion relations. These are 

K ;  = 2 $ 1 ~ 2 K 1 + $ i 4 i ( K 3 + ~ K ~ ) + J / 2 4 2 ( ~ 4 ~ ~ ~ 7 ) + ~ $ 7 ~ 1 ( ~ 9 + ~ 1 0 )  
2 (0 )  2 (0 )  2 (0 )  KL = $:K2+2$143 KS+($143 + $ 2 4 5  +2$1$24kO))K: 

Here, the quantities $e, 4oL, 4L1), 4:) are obtained from the evaluation of (. . where 
the brackets contain spins or products thereof. For example, ( ~ f ) ~  = for I a spin-: 
block, and ( s : ~ ) ~  = -4P))S: +4!io’ for J a spin-1 block, where i,h3, 4:) and r$y) 
depend on the coupling parameters K1, Kz ,  K5 and Ks.  The derivation of (16) together 
with these quantities can be found in Schofield (1980). 

In dealing with the presence of a magnetic field H, the ‘field’ part of the Hamiltonian 
required to take consideration of (14) up to and including the first-order term is given by 
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where the first two expressions deal with distinct (reduced) magnetic fields H1 and H2 
applied to the respective sublattices, and the third expression is a sum, over all 
nearest-neighbour pairs, of three-spin interactions with coupling parameter H3. The 
first-order recursion relations are given, in matrix form, by 

S H ' = A x S H  (18) 
where SH = (SEI1, 6H2, (and similarly for SH') and A is a (3  x 3 )  matrix whose 
elements are expressions, involving the quantities IC, and q5 above, evaluated at the 
zero-field fixed point (KT, . . . , KTo) obtained from (16). These expressions are 
complicated and are not presented here; they can be found in Schofield (1980). 

First-order zero-field results are obtained from (16) on substituting Ki = 0, i = 
2 ,  . . . , 10. A non-trivial fixed point K" = K ,  is readily found, and is listed in table 1, 
together with the eigenvalue A T  = ( a K ' / a K ) p .  (In this table superscripts refer to the 
order of the calculation.) 

Table 1. Results of four-spin block calculation. 

1.960 2.023 2.677 3.600 1.289 1.186 

-05060 0.033 0.150 1.669 2.453 12.153 

The first-order recursion relation for the nearest-neighbour coupling parameter K 
is unchanged under the transformation K + -K (Schofield 1980). It follows from this 
that -Kp)  is also a fixed point with corresponding eigenvalue identical to that already 
obtained from K f ) .  It is now seen that the eigenvalue A T  relevant to the case of the 
nearest-neighbour anti-aligning ferrimagnet (characterised by K < 0) can be obtained 
from a first-order study of the corresponding ferromagnet (K  > 0). This finding is 
consistent with an exact result, for the nearest-neighbour model, given by Schofield 
(1980). For this model one can use a sublattice spin reversal (e.g. si + -si, Vi) to show 
that the properties of the ferromagnet in uniform field (H, H )  are identical to those of 
the ferrimagnet in staggered field (H, - H )  where the notation indicates the fields acting 
on the individual sublattices. 

An analogous result to this can readily be shown to hold when the even-body 
interactions of figure 1 are present. In this case ferro- and ferrimagnetism can be 
characterised, respectively, by ( K I  > 0, K2,  . . . , Klo)  and (KI  < 0, K2, . . . , Klo).  The 
second-order recursion relations (16) are not, however, unchanged under the trans- 
formation (K1, K2, . . . , Klo) + ( -KI ,  K2, . . . , Klo)  and consequently do not possess the 
symmetry embodied in the exact result (in contrast to the first-order case above). 
Nevertheless, the exact result indicates that consideration of the appropriate fixed point 
(KT > 0, KZ, . . . , KYo) will yield critical exponents whose values are the same (within 
numerical approximation) as those obtained from a corresponding point with negative 
nearest-neighbour coupling parameter. With these comments in mind, we look for a 
fixed point (KT > 0, KZ, . . . , KTo) in this paper. In the subsequent analyses, we regard 
the derived exponents as being appropriate either to ferromagnetism in a uniform field 
or to ferrimagnetism in a staggered field. 
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A fixed point of (16) of the above type is readily found by numerical means, and is 
given by 

(KT, . . . , KTo)= (1,0443, -0*0063,0*3000,0*0768,0*1471, 

-0,2736, -0*0021,0*0860,0~0356,0*2511). (19) 
Linearisation of the RG transformation about the fixed point yields a (10 x 10) matrix of 
coefficients (dKJdKj)K*, the eigenvalues of which are found to be 

A T  = 2.0231 A 2  = 0.2428 A 3  = 0.0675 + 0.0643i 
(20) 

As = 0.5696 = A 7  = h s  = = = 0 * 
t 4 = A 3  

where * denotes complex conjugation. 
The quantity K ,  = J/kT,,  where T, denotes the critical temperature, is determined 

from (19) and the left eigenvector corresponding to the relevant eigenvalue A T  using the 
linear extrapolation procedure of Niemeijer and van Leeuwen (1973, 1974), and is 
listed in table 1. 

For the magnetic field analysis, only the first two terms of (17) are required in a 
zeroth-order approximation to (14), and (18) is reduced to consideration of a (2 X 2) 
matrix, for which we find a single non-zero eigenvalue AH. This is given in table 1. The 
(3 x 3) matrix A associated with the first-order analysis is found to have one relevant 
eigenvalue AH (also listed in table 1) and two irrelevant eigenvalues, A 2 =  

0.0188 +0*1367i and A 3  = A T .  
The best estimates of A T  and AH,  obtained from the zero-field second-order and 

non-zero field first-order analyses, respectively, are employed to yield the exponents a ,  
p, y and 6. Only two are independent; the others are given by the exponent scaling laws 
which arise naturally from the KG formalism (Wilson 1971a, b). The results are 
presented in table 1, together with those for a and 6 obtained from the lower-order 
analyses. It is seen that the best estimates are in good agreement with the values a = 0, 
p = 0,125, y = 1.75, S = 15 suggested by the universality hypothesis. 

4. Calculation employing blocks of five spins 

For the block construction of figure 3, the Hamiltonian required to generate the 
second-order recursion relations is analogous to (15), and is obtained from the latter 
through the removal of the distinction between the directions 1 ar,d 2. We now have 
K3 = K2, K5 = K4 and K9 = KE, and it is seen that 2 is described by the seven coupling 
constants ( K I ,  K2, K4, K6,  K7, K E ,  Klo) .  On relabelling these ( K 1 , .  . . , K7) the full set 
of second-order recursion relations are given by 

K :  = 3$241K1 i- $242(Kz + K4) + $14i(K3 + Ks) + $741(2& + K7) 

KL = 4: (K3 f 2K5) i- 2 4  :$3(K6 -t K77) + 4: (5 $6 + 2461 -t 243 -$& ) K :  
K i  = C C / : ( K Z + ~ K ~ ) + $ ; ( ~ ~ : O ’  +24P’+i)K: 
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where the quantities (I, and C$ are analogous to those of § 3 ,  and are given in Schofield 
(1980). First-order results for K, and AT are readily obtained from (21), and appear in 
table 2. (Superscripts again indicate the order of the calculation.) In second order, a 
fixed point of (21) is found to be 

(KT, . . . , KT)=(l*2435,0*1008,0*1743, -0.0316, -0~5129,0~1009,0*4358) .  (22) 

Table 2. Results of five-spin block calculation. 

2.089 2.228 3.073 4.527 1.530 1.374 

-0.185 -0.010 0.124 1.761 2.306 15.175 

Linearisation of the RG transformation about (KT, . . . , K ?  ) yields a (7 x 7) matrix, the 
eigenvalues of which are found to be 

A T  = 2.2275 A i  = 0.4039 A 3  = -0-1267-tO-1444i 
(23) 

The quantity K ,  is now readily determined by linear extrapolation, and is given in 
table 2. 

For the field analysis, (17) again applies. In the zeroth-order analysis we obtain two 
eigenvalues AH = 3,0727 and h2 = -1.3724; we regard the former as the relevant 
eigenvalue of interest, the apparently relevant nature of the latter being regarded as an 
artifact of the approximation used. In the first-order analysis we find a single relevant 
eigenvalue A H  (listed in table 2) and two irrelevant eigenvalues, h2 = -0.0726 + 0.1 160i 
and h3 = A;. 

The derived exponents appear in table 2, and the remarks of the last paragraph of 
§ 3 again apply. 

A T  As = 0.1084 h g =  -0.0943 A 7  0.0288. 

5. Summary 

The results obtained for the critical exponents are seen, for both block constructions, to 
provide good evidence-relevant to the case of ferrimagnetism-supporting the usual 
form of the universality hypothesis. As one might expect, the fixe-spin block con- 
struction yields somewhat better evidence than the four-spin block case. 

We have demonstrated the application of the RG method to a model system which is 
in some respects more complicated than those previously examined. However, the 
complexity of equations (16) and (21), togetherwith the field recursion relations, shows 
the computational difficulties involved in such an exercise. 
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